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This study investigates an AI system’s strengths and limitations for analyzing theoretical issues 
in mathematics education. Using a comprehensive exam question about Mathematical 
Knowledge for Teaching (MKT), we explored how AI, specifically Google's NotebookLM, 
interprets and distinguishes between Ball’s and Thompson's MKT frameworks. Faculty with 
expertise in MKT research reviewed and identified both surprising competencies and subtle 
limitations in the AI's theoretical analysis. We present a framework categorizing these 
limitations as field knowledge, attribution, argumentation, illustration, and artificial neutrality. 
Our findings suggest that current AI systems can do useful theoretical analysis in math education 
at a graduate level but demands alertness to nuanced failings which often require expert 
knowledge to detect. Implications for research and doctoral pedagogy are advanced. 

Keywords: Computing and Coding, Data Analysis and Statistics, Mathematical Knowledge for 
Teaching, Research Methods 

As AI systems increasingly demonstrate capabilities for academic analysis across disciplines, 
we investigate their capacity for theoretical analysis in mathematics education, specifically 
testing Google's NotebookLM (NLM) on a comprehensive exam question comparing Ball’s and 
Thompson's perspectives on Mathematical Knowledge for Teaching (MKT). While Ball adopted 
the term MKT from Thompson's 1996 work (Ball et al., 2001), they developed distinct 
theoretical frameworks reflecting different epistemological stances. Their approaches share 
common ground but diverge significantly in their theories of knowledge and assessment 
strategies (Byerley & Thompson, 2017). This makes the analysis a non-trivial academic task, but 
also one we would engage a novice field member in if interested in MKT. This work contributes 
to emerging qualitative approaches for evaluating AI-generated academic content, though 
mathematics education content requires domain-specific expertise and has unique domain-
specific challenges. 

Using NLM’s retrieval-augmented generation (RAG) capabilities, we provided 24 primary 
sources about MKT and prompted the AI to create a comparative analysis. Two experienced 
mathematics education researchers then evaluated the output as they would a doctoral student's 
comprehensive exam response. The following research question guides our qualitative analysis 
of the AIs writing: "What are the strengths and limitations of an AI-generated theoretical 
analysis of Ball and Thompson's research on MKT?"  

Mathematical Knowledge for Teaching 
Thompson’s conceptualization of the term knowledge in MKT was heavily influenced by 

Piaget’s work and theories of radical constructivism. His research investigated teachers’ 
underlying conceptual structures for mathematical ideas and teachers’ ideas for how those ideas 
might develop in another (Thompson, 2015). He eventually stopped using the term MKT and 
started using the term Mathematical Meanings for Teaching because he felt the term meaning 
better captured that he was studying teachers’ conceptual structures that were personal to that 
teacher. Ball et al. (2005) studied MKT by observing elementary teachers in practice to identify 
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the “mathematical knowledge and skill used in the work of teaching” (pp. 16-17). When initially 
designing an assessment for MKT, Ball thought items measured if teachers knew various facts 
about students’ mathematical learning. As a result of validation efforts on the assessment, Ball 
and colleagues’ thinking evolved and they realized they were measuring teachers’ ability to 
engage in reasoning using both their knowledge of mathematics and students versus the teachers’ 
factual knowledge (Schilling et al., 2007).  

The notable differences between Thompson’s and Ball’s approaches underscore how 
researcher’s underlying theories of knowledge influence the ways in which they operationalize 
MKT, and thus the impact their work might have on the preparation and support of teachers.  

Retrieval Augmented Generation (RAG), Context Windows, and Academic Work 
Anjos et al. (2024) studied AI qualitative analysis of conceptual learning in science education 

and found two critical technical issues, that of hallucinations and of limited context window. 
Hallucinations are a well-known issue for Large Language Models (LLMs) where the AI invents 
information, like citing non-existent research papers (Sun et al., 2024). RAG is designed to 
reduce hallucinations by directly grounding responses in provided source data. In a recent 
medical study, NLM achieved 86% accuracy versus just 25% for GPT-4 when analyzing the 
same reference materials, while providing 95% correct citations (Tozuka et al., 2024). The 
capacity to curate sources and ground AI responses in selected material creates important control 
and allows responsible academic use by ensuring that selected sources are reliable. As AI tools 
become more integrated in research workflows, systems that provide transparent sourcing are 
preferable to "black box" standard LLMs.  

This work contributes to emerging approaches for systematically evaluating AI-generated 
academic content, including pedagogical frameworks for qualitatively distinguishing AI from 
human-authored texts (Garib & Coffelt, 2024), multidimensional comparative analysis methods 
(Berber Sardinha, 2024), and comprehensive evaluation systems for AI-generated educational 
resources (Huang et al., 2025). We agree with Fonseca et al. (2023) that we are subjectively 
interpreting the AI output with our own perspectives and biases, AI algorithmic processes have 
their own implicit and explicit biases, and source artifacts carry their own as well. When using 
AI generated research analysis it is crucial to interrogate biases in every element of the inference 
chain and critically reflect on AI outputs to inform subsequent scholarship. 

Methodology  
We explored AI’s capabilities to answer a comprehensive exam comparing Thompson and 

Ball’s MKT frameworks, discussing knowledge framing and  affordances/constraints of each 
perspective. After testing four AI systems, we decided that NLM produced the best response.  

We employed NLM’s RAG environment with 25 key papers (12 by Ball, 12 by Thompson, 
plus Tallman 2023) selected based on the second author’s MKT expertise.. We then 1) prompted 
NLM to respond to the comp question, 2) added resulting essay, back into NLM 3) prompted it 
to analyze the essay to find any weaknesses, and then 3) prompted it to use its gap analysis to 
write a better prompt for a new essay. The outcome of that critical reflection cycle was 4) fed 
back into the AI to generate a new, final version. Materials are available at https://osf.io/57yeu/  

Upon first read the NLM essay appeared to us to be of impressively high quality relative to 
expectations for a comprehensive response during the second year of PhD studies. As a research 
team, we first discussed our impressions and if the response would pass a comprehensive exam. 
Then, the second and third authors evaluated the essay rigorously, leaning into their MKT 
expertise to judge the AI output as if it had been submitted for a comprehensive exam. They 
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considered whether the essay is well-written, answers the question accurately, and demonstrates 
that the student has adequate knowledge of the subject to operationalize the concept as they plan 
and conduct a dissertation study in an MKT-related area of study. They did not evaluate if the 
paper had novel contributions or new theoretical insights that would be worthy of research-
journal publication. Because the research team desired to judge the outcome as a comprehensive 
response, they found it important to make explicit that novel insights were not expected. 

 We analyzed 74 substantive expert comments using Charmaz and Belgrave's (2019) coding 
approach through three phases. We generated 72 preliminary codes across the comments, with 
many comments getting multiple codes. Codes ranged from major (e.g., "cited opinion as fact", 
“insightful wording”) to minor (e.g., "awkward wording"). We then systematically compared and 
collapsed the codes into 8 intermediate categories that captured different types of AI limitations 
and capabilities. Finally, we met as a research team to develop the final five-category framework 
through consensus discussion, refining categories for theoretical coherence and practical utility. 
We present our findings below, reviewing the positive then the negative. 

AI Competencies and Strengths 
Initial expert review concluded that the AI output was comparable to graduate student work, 

with no clear tells that would identify it as AI-generated. Further, both experts judged the AI to 
have more accurately discussed literature than many papers submitted for peer-review. The 
second and third author both thought the paper answered the question asked using the literature 
provided. The paper accurately summarized many key distinctions between Ball and 
Thompson’s perspectives and backed it up using appropriate quotes. Neither expert thought a 
student who submitted this essay would fail the comprehensive exam, but they both had ideas for 
how this hypothetical student could deepen their thinking in the next stage of their PhD process. 
The faculty shared uncertainty about whether the AI was fully prepared to operationalize a 
theory of MKT in its own research because the AI summarized existing literature versus 
displaying creative analysis and novel examples capturing distinctions between two perspectives 
on MKT. However, the faculty agreed that this was a common issue with newer human 
academics. Both ultimately agreed that the response would likely pass comprehensives, with the 
only exception being a short extension question that prompts the student to provide more 
concrete examples of the differences.  

The research team identified numerous salient attributes that contributed to the assessment of 
the graduate-level quality of the AI output. The AI analysis showed accurate grasp of MKT 
literature and effective use of relevant quotes, e.g. this excerpt that is consistent with 
Thompson’s writing and that was judged to capture key ideas related to Thompson’s thinking: 

Thompson's focus on mathematical meanings provides a deeper, more nuanced 
understanding of teachers' mathematical thinking. His emphasis on schemes, actions, and 
reflective abstraction offers a way to understand the dynamic and interconnected nature of 
mathematical understanding. The focus on meanings also acknowledges the subjective nature 
of knowledge construction, recognizing that teachers’ actions are often a reflection of their 
own personal mathematical understandings. 
NLM output sometimes exhibited deep historical knowledge of MKT development, e.g.: 
“Ball and her colleagues developed a framework that specifies the ‘mathematical tasks of 

teaching’ which include ‘interpreting and evaluating students’ non-standard mathematical ideas’ 
(Selling et al., 2016, p. 35). This approach is rooted in Shulman's (1987) notion of pedagogical 
content knowledge (PCK), expanding and specifying it through empirical investigation.” 
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The framing, explanation, quote selection, and Shulman connection concisely explains how Ball 
and colleague's approach builds on prior theory in the field. 

The AI used other exemplary quotes from source documents in keen and insightful ways. As 
an example of a well-chosen quote: "Specialized content knowledge (SCK) is the mathematical 
knowledge that allows teachers to engage in particular teaching tasks (Hill et al, 2008). For 
example, a teacher needs SCK to ‘explain the meaning of subtraction of a negative number and 
connect it to moves on the number line in ways that make conceptual sense’ (Selling et al., 2016, 
p. 37)." This quote is accurate and helps illustrate the concept of SCK in a meaningful way.  

Later, the essay addresses Thompson's view of knowledge and meaning in another example 
of incisive commentary. The AI said Thompson "explicitly contrasts his focus on ‘meanings’ 
with a focus on ‘knowledge,’ which he argues is often used as an undefined term", an accurate 
point as Thompson has frequently pointed out that what it means to "understand topic X" is often 
left undefined by researchers inside and outside of MKT (Thompson & Saldanha, 2003). 

MKT-AI Limitations Framework & Examples 
Five general themes of significant limitations emerged from analysis (Table 1). Additional 

issues of syntax were not theoretically important so were not included in the framework. We 
share selected quotes that illuminate the issues in each major theme, then discuss implications.  

 
Table 1. MKT-AI Limitations Framework 

 
Category Description Examples 
Deep 

Knowledge 
of the Field 

Issues requiring domain 
expertise to analyze 

Characterizing Tallman's work as an alternative to 
Ball/Thompson rather than building on Thompson 

Reference & 
Attribution 

Mishandling source 
material and citations 

Treating opinions stated in sources as established 
facts 

Argumentation Flow of sentences fails 
to build an argument 

A paragraph addressing differences on culture that 
ended up not really saying anything 

Illustration 
using 
Examples 

Theoretical descriptions 
missing concrete 
examples 

Contrasting SCK and Thompson "powerful 
pedagogical conceptualizations" under the heading 
“Practical implications” without giving a practical 
example, only abstract principles 

Artificial 
Neutrality 

Imposing or creating 
consensus 

False balance between perspectives 
Overly nonjudgmental assessments 

 
Deep Field Knowledge 

The AI output included passages that sounded reasonable on the surface, but had subtle 
errors, e.g. in discussion of views of other scholars on MKT: "Alternative perspectives, such as 
Tallman’s Deweyan-based view, propose that PCK must be grounded in an understanding of the 
functional mechanisms of mathematics learning (Tallman, 2023)." It is certainly true that 
Tallman references Dewey in his theoretical paper connecting MKT "to its Deweyan roots", but 
we do not view his work as an alternative to Ball and Thompson's views so much as building 
upon Thompson's (Tallman, 2023). This category illustrates how the AI occasionally expresses 
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opinions that create incorrect implications, underscoring the need for critical analysis by 
someone with deep field knowledge to catch subtle errors. 
Reference and Attribution 

This theme covers issues of pulling from source material: treating an opinion stated in source 
material as fact, treating a source's description of a third party's work as having been done by the 
source document author, taking something in a source document at face value when an academic 
possibly would have dug deeper. Here the AI contrasts Ball and Thompson's views of SCK:  

However, a teacher with a robust mathematical meaning (Thompson) understands why 
students make these errors and how these errors stem from a limited understanding of the 
meaning of fractions as multiplicative comparisons (Byerley & Thompson, 2017). Such a 
teacher would be better positioned to design activities and pose questions to shift students' 
understanding. 

This sounds quite authoritative, but Byerley and Thompson (2017) the first sentence is stated as 
an opinion, not a fact.  
Argumentation 

This theme covers sections where sentences individually made sense, and were accurate, but 
failed to make a coherent argument. This was seen at different levels of scale; where one 
sentence didn’t fit well with any of its neighbors, up to where an entire paragraph failed to hold 
together. These sentences always read well out of context and to a superficial read sounded 
sensible. Only on critical reflection did these argumentation issues become clear. We caution the 
reader not to infer that this limitation in the AI output is specific to AI. The research team has 
confronted this issue in our own and other human writing, particularly by field novices.  

The following particularly egregious example is from a section titled “Evolution of 
Frameworks: From Shulman to Current Developments”. Although each sentence is factually 
correct and grounded in source material, the argument the paragraph presents is unclear at best.  

Considerations of cultural contexts and the needs of English Language Learners (ELLs) add 
further layers of complexity to the discussion of MKT (Ball et al., 2008). As Thompson 
notes, teachers' meanings are culturally embedded and difficult to change (Thompson & 
Milner, 2019). The universality of MKT is an important consideration (Ball et al., 2008). For 
example, what counts as a valid mathematical explanation or representation may vary across 
different cultural contexts (Hill et al., 2005). Further, ELLs often bring different 
mathematical experiences and ways of expressing their understanding. Teachers must be able 
to draw on their mathematical knowledge and meanings to connect mathematics concepts 
with students' cultural and linguistic backgrounds. 

The AI successfully showed both Ball and Thompson address cultural issues, but the paragraph 
makes little sense under the “current developments” heading. Importantly, it also fails to sensibly 
compare or contrast the two views. Is the AI saying that Thompson believes teacher MKT is 
culturally specific, but Ball considers it universal? If so, it contradicts that in the next sentence.  

Similar issues plague the composition elsewhere in spots where the AI-generated sentences 
read well and make sense taken individually but lack coherence when considered as part of an 
argument. This structural issue applied mainly to the small scale, where a phrase failed to 
contribute to a sentence or a sentence to the paragraph, but examples like the one above show 
that even an entire paragraph could be less than coherent. 
Failure to Illustrate 

Many of the AI paragraphs were both accurate and well-written, such as the following: 

1269



Zbiek, R. M., Yao, X., McCloskey, A., & Arbaugh, F. (Eds.). (2025). Proceedings of the forty-seventh annual 
meeting of the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Pennsylvania State University. https://doi.org/ 10.51272/pmena.47.2025 

i 

	

	
	

Thompson's framework suggests that professional development must focus on transforming 
teachers' underlying mathematical meanings and ways of thinking (Thompson, 2015). This 
implies going beyond teaching specific techniques and engaging teachers in activities that 
challenge and expand their own conceptualizations of mathematics. Thompson suggests that 
professional development should focus on helping teachers develop ‘powerful pedagogical 
conceptualizations’ (Silverman & Thompson, 2005) of the mathematics they teach. 

Despite its accuracy and cohesiveness, the paragraph is a perfect exemplar of a failure to 
illustrate. The reader is told that Thompson’s views imply engaging teachers in professional 
development to deepen their conceptual understandings, which naturally invites the reader to 
wonder what such a professional development would look like. Specific suggestions for 
professional development are discussed in Byerley & Thompson (2017) so the AI had access to 
that information, but did not use it here. 

 The AI often gave a good thousand-foot analysis but did not always provide examples of 
critical epistemological differences that drive Ball and Thompson's distinct approaches. For 
instance, when discussing Thompson’s 'powerful pedagogical conceptualizations' versus Ball's 
SCK, the AI used the correct terms but did not illuminate with specific examples how these 
concepts reflect fundamentally different views of teacher knowledge.  

In essence, its key failings were not blatant errors but could be seen as a failure of empathy. 
An expert might have understood that certain concepts would raise questions in a reader that 
invited clarification. In many of those situations, but not all, the AI did not employ concrete 
examples that could have illuminated the distinctions it was making to the reader. Without 
grounding theoretical distinctions in specific examples, the analysis missed opportunities to help 
readers construct actionable understanding of these contrasting frameworks. Taken as a comp 
exam response, while it stated differences between the two perspectives, the AI writer did not 
illustrate that they grasped the implications of those. That understanding would be critical to 
operationalize the perspectives during the design and execution of a dissertation study. 

In other places, the AI essay did allude to examples but did not give enough details of the 
examples to be coherent or illustrate perspective differences. For instance: 

Another example, given by Thompson (2016, p. 463), is that a teacher with a strong 
understanding of variable will understand that the solutions to an equation are the values that 
make the equation true, and can help students see that connection to a function's domain and 
image. 

This is accurate, relevant, and coherently contributes to the argument being made in that 
section. However, there is a good deal of background theory that is needed to understand why 
Thompsons says it is significant that a solution is a (static) value that makes an equation true, as 
opposed to a dynamic variable that is part of a functional relationship.  
Artificial Neutrality 

AI chatbots have been shown to create false consensus (Choi et al., 2025). The AI essay 
concludes with a clear example of this, claiming that “By integrating these [Ball and 
Thompson’s] perspectives, mathematics education can move towards more effective models of 
teacher education and professional development, thereby ultimately improving student learning.” 
Novice human math educators may share this tendency to want to combine and unite conceptual 
frameworks, but a more sophisticated understanding of theory would take compatibility, 
coherence, and utility into account before proposing to mash ideas together. Whether this counts 
as a technical AI error or not is debatable, but we judged it to be a weak point of the AI essay.  
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AI Capabilities for Mathematics Education Research: Lessons Learned 
Our MKT-AI Limitations Framework identified five themes, patterns in how AI weaknesses 

in grappling with theory can manifest. The framework’s major categories of Deep Field 
Knowledge, Reference & Attribution, Argumentation, Failure to Illustrate, and Artificial 
Neutrality helped us become alert to subtle failings and led us to become more aware of these 
issues manifesting elsewhere in the text. NLM clearly succeeded in both small and large ways 
and demonstrated impressive capabilities to synthesize a large body of knowledge, identify 
important theoretical constructs, use them in a mostly-coherent narrative, and employ correct 
citations and references. However, its failings were evident to experts upon close reading and 
critical reflection. Some of these issues may be addressed by further prompting the AI in ways 
that take these themes into account, suggesting direction for another critical study. 

Pedagogical Implications 
An AI system that can produce a "passing" comprehensive exam response could be an 

opportunity to leverage AI capabilities in doctoral training. For instance, AI-generated 
theoretical analyses could serve as discussion prompts in doctoral seminars, with students 
practicing critical evaluation of arguments and identifying subtle flaws or missing insights. This 
develops their own expertise while familiarizing them with AI's strengths and limitations. 
Doctoral students are still required to present oral defense so demonstration of mastery of their 
material without AI scaffolding is still an inherent part of the process. 

Gaps between AI's shallow-seeming expertise and deep scholarly understanding exemplify 
aspects of doctoral training we might emphasize more explicitly. While the AI could report what 
scholars said, it struggled to demonstrate judgment that anticipates reader needs or selects 
illuminating examples—skills we want doctoral students to develop but may not explicitly teach. 
AI responses could provide concrete examples for discussing higher-level scholarly capabilities. 

Additionally, AI tools might serve as "practice partners" for comprehensive exam 
preparation. Students could critique AI-generated responses to practice questions, developing 
their analytical skills while gaining confidence in their own expertise. This also raises questions 
about how we assess doctoral student understanding. With the progress of AI and increasing 
presence as part of academic workflow, perhaps we need to more explicitly focus on skills that 
center human scholarly judgment used in critical partnership with AI. 

Anticipating the Impact of Future AI Developments 
Looking ahead, advances in AI will likely enhance all aspects of mathematics education 

research. Future developments will possibly make our concerns obsolete, but our analysis 
suggests present practice should focus on specific applications where AI can support research in 
a reliable or at least predictable fashion. Literature search, research synthesis, data analysis, and 
even hypothesis generation can be productive activities if they are paired with expert oversight. 
Our methodology contributes to emerging foundations for evaluating AI-generated theoretical 
analysis, joining concurrent methodological developments across disciplines in establishing 
systematic approaches for AI-academic collaboration. 

Could iterative cycles of generation, criticism, and prompt refinement converge on a stable, 
high-quality theoretical analysis? Our experience suggests that one such cycle improved the AI 
output by addressing identified gaps and omissions. The next step is to test a multi-iteration 
approach systematically using newer reasoning models, with prompts explicitly designed to 
target the error patterns we identified. Now and in future AI-human research collaboration, 
human experts will be needed to evaluate each step critically. 
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